Sleep-dependent learning: a nap is as good as a night

Sara Mednick1, Ken Nakayama1 & Robert Stickgold2

The learning of perceptual skills has been shown in some cases to depend on the plasticity of the visual cortex1 and to require post-training nocturnal sleep2. We now report that sleep-dependent learning of a texture discrimination task can be accomplished in humans by brief (60–90 min) naps containing both slow-wave sleep (SWS) and rapid eye movement (REM) sleep. This nap-dependent learning closely resembled that previously reported for an 8-h night of sleep in terms of magnitude, sleep-stage dependency and retinotopic specificity, and it was additive to subsequent sleep-dependent improvement, such that performance over 24 h showed as much learning as is normally seen after twice that length of time. Thus, from the perspective of behavioral improvement, a nap is as good as a night of sleep for learning on this perceptual task.

A wide variety of learning processes in both humans and animals requires extended, post-training sleep (for review, see ref. 3). Depending on the nature of the task, differing stages of sleep contribute to this sleep-dependent consolidation process. For the most part, studies in humans have investigated the benefits of nocturnal sleep3. Research on behavioral effects of napping has found improvement in alertness, productivity and mood4,5, as well as restoration of perceptual deterioration6. But whether relatively brief daytime naps can produce learning is not known.

Improvement on visual perceptual tasks can occur over periods of minutes to hours7, as well as over extended periods of days8, and remain stable for months9. For a visual texture-discrimination task in which subjects must rapidly discriminate the orientation of a target embedded in distractors9, initial improvement is seen over the first few minutes of training10, and slower improvement is seen over subsequent nights of sleep10,11. Both SWS12 and REM13 are implicated in a two-stage model of nocturnal consolidation, with overnight improvement being retinotopically specific and highly correlated with the product of the amount of early-night SWS and late-night REM sleep11. Repeated testing within a day on this task leads to a retinotopically specific deterioration in performance6, which is reversed by 60-min midday naps rich in SWS. But these naps have relatively little REM sleep, and fail to produce significant improvement over baseline performance. Similar deterioration without sleep is also seen at night12.

We now report that 60- and 90-min naps containing both SWS and REM facilitate learning on this texture-discrimination task, in a manner similar to that seen after nocturnal sleep.

Subjects were trained on the texture discrimination task at 9:00 in the morning on day 1, tested at 19:00 that evening, and then retested at 9:00 the next morning. In the task, a target screen is briefly flashed, consisting of a 19 × 19 grid of horizontal bars containing three diagonal bars and a central fixation target. Then, after a variable-length interstimulus interval (ISI), a mask consisting of both horizontal and diagonal bars appears. The diagonal bars, located in the lower-left visual quadrant, form either a horizontal row or vertical column. After each trial, subjects report whether the diagonal bar array was in a row or column arrangement, as well as whether the central fixation target was an "L" or "T." Performance is defined as the threshold ISI required for a subject to be 80% accurate in the row/column discrimination. Two experimental groups took naps at 14:00 (group 1: total sleep time, 59.3 ± 6.4 (mean ± s.d.); SWS, 20.2 ± 2.0; REM, 4.2 ± 2.2 min; group 2: total, 96.3 ± 6.3; SWS, 47.2 ± 5.8; REM, 25.6 ± 4.1 min), while ‘no-nap’ control subjects went about their normal day without midday sleep. All subjects reported sleeping an average of 7.6 ± 2.1 h on the night before day 1 and 7.5 ± 1.2 h on the night before day 2. Improvement was measured as a decrease in threshold ISI from each subject’s baseline threshold (at 9:00 on day 1).9

No-nap control subjects showed the expected deterioration in performance at 19:00 (13.7 ms longer ISI threshold, P = 0.06, Fig. 1), and performed significantly worse than the nap groups (P = 0.02). The deterioration in performance from training to first retest in this group, measured over an 8-h interval, was similar to that seen in our prior

![Figure 1](https://example.com/figure1.png)
study, which showed 13.8 ms deterioration over a 2-h interval. This suggests that stimulus exposure rather than inter-test interval produces deterioration in texture discrimination, and that sleep, rather than time, is required to reverse this perceptual deterioration.

When tested at 19:00, the 90-min nap group showed significant improvement (8.4 ms, \( P = 0.008 \)), whereas the 60-min nap group showed marginal improvement (4.4 ms, \( P = 0.07 \)). Mindful of our hypothesis that both SWS and REM may be necessary for learning in naps, we divided the 60-min nap group, all of whom had SWS, into subjects with and without REM and found that 60-min naps with both SWS and REM produced significant improvement (10.0 ms, \( P = 0.004 \), Fig. 1 right). In contrast, 60-min naps with SWS but not REM showed no improvement (−1.1 ms, \( P = 0.72 \), Fig. 1 center) and significantly less than seen in the SWS + REM group (\( P = 0.01 \)). The 90-min nap group showed similar results (Fig. 1, white bars). When subjects with SWS + REM naps from the 60- and 90-min groups were combined, improvement correlated significantly with the product of the amount of SWS and REM sleep (stepwise regression, \( r = 0.37, P = 0.01 \), similar to findings for nocturnal sleep). The additive effects of SWS and REM seen in these naps are also similar to those for early and late night sleep reported previously. In addition, the amount of improvement did not differ significantly from that seen in our previous study of overnight improvement (9.7 vs. 11.9 ms; \( P = 0.5 \)). Thus, nap-dependent improvement showed the same magnitude and sleep-stage improvement (8.4 ms, \( P = 0.008 \)), whereas the 60-min nap group showed marginal improvement (4.4 ms, \( P = 0.07 \)).

We tested the retinotopic specificity of nap-dependent learning by training subjects at 9:00 in one visual quadrant (lower left or lower right, counterbalanced) and then retesting them in the contralateral quadrant at 19:00, with a 90-min nap at 14:00. Training plus a nap had no significant effect on the untrained quadrant (\( P > 0.2 \)), indicating that nap-dependent learning has a retinotopic specificity similar to that reported for overnight improvement, as well as for same-day deterioration, and suggesting that the beneficial effects of a 90-min midday nap are localized to primary visual cortex.

Nap-dependent improvement was not at the expense of subsequent nocturnal improvement. On the contrary, when subjects were retested the next morning, the 90-min nap group showed an additional 9.7 ms of improvement (24-h total, 18.1 ms, \( P < 0.0001 \)), and greater improvement than the no-nap group (Fig. 2, \( P = 0.03 \)).

The no-nap group showed deterioration at 19:00, but normal levels of improvement on day 2 (7.8 ms; Fig. 2, no-nap). This improvement did not differ significantly from a second (24-h) control group trained at 9:00 and retested 24 h later without an intervening test on the evening of day 1 (\( P > 0.4 \); Fig. 2, 24-h control).

The nap group actually showed 50% more improvement over a period of 24 h than the 24-h control group (18.1 ms vs. 11.8 ms; \( P = 0.07 \)). Indeed, 24-h improvement in the nap group was as great as that previously reported after two nights of sleep (Fig. 2, 48-h control; 18.1 ms vs. 17.5 ms; \( P > 0.99 \)). Taken together, these findings indicate that a 90-min nap can produce as much improvement as a night of sleep, and a nap followed by a night of sleep provides as much benefit as two nights of sleep.

These findings show that naps can lead to improved performance on a texture discrimination task similar to previously reported learning after a full night of sleep, in terms of magnitude, retinotopic specificity and dependence on both SWS and REM. Similar improvement has been reported after 192 min of early-night sleep, where subjects averaged 74 min of SWS and 24 min of REM—an amount of REM similar to the 25.6 min found in our 90-min nap group.

Finally, napping can significantly enhance the improvement that develops over 24 h. Thus, a nap can not only ameliorate experience-dependent perceptual deterioration, but can also facilitate the learning process that results from an hour spent training on a visual texture discrimination task.

ACKNOWLEDGMENTS

This research was supported by grants from the US National Institutes of Health (MH 48832, DA 11744 and NS 26985) and the Air Force Office of Scientific Research (83-0320).

COMPETING INTERESTS STATEMENT

The authors declare that they have no competing financial interests.

Received 18 March; accepted 16 May 2003

Published online 22 June 2003; doi:10.1038/nn1078